New technique for exploring structural dynamics of nanoworld

Source: link

New technique for exploring structural dynamics of nanoworld

Short electron pulses excite deep core-level electrons in materials providing snapshots of the structural dynamics after laser excitation. Credit: Zewail Lab/Caltech

Read more at:

A new technique for visualizing the rapidly changing electronic structures of atomic-scale materials as they twist, tumble and traipse across the nanoworld is taking shape at the California Institute of Technology. There, researchers have for the first time successfully combined two existing methods to visualize the structural dynamics of a thin film of graphite.

Described this week in the journal Structural Dynamics, from AIP Publishing and the American Crystallographic Association, their approach integrated a highly specific structural analysis technique known as “core-loss spectroscopy” with another approach known as ultrafast four-dimensional (4-D) electron microscopy—a technique pioneered by the Caltech laboratory, which is headed by Nobel laureate Ahmed Zewail.

In core-loss spectroscopy, the high-speed probing electrons can selectively excite core electrons of a specific atom in a material (core electrons are those bound most tightly to the atomic nucleus). The amount of energy that the core electrons gain gives insight into the local electronic structure, but the technique is limited in the time resolution it can achieve—traditionally too slow for fast catalytic reactions. 4-D electron microscopy also reveals the structural dynamics of materials over time by using short pulses of high-energy electrons to probe samples, and it is engineered for ultrafast time resolution.

Combining these two techniques allowed the team to precisely track local changes in electronic structure over time with ultrafast time resolution.

“In this work, we demonstrate for the first time that we can probe deep core electrons with a rather high binding energies exceeding 100 eV,” said Renske van der Veen, one of the authors of the new study. “We are equipped with an ultrafast probing tool that can investigate, for example, the relaxation processes in photocatalytic nanoparticles, photoinduced phase transitions in nanoscale materials or the charge transfer dynamics at interfaces.”

Combining Two Techniques on One Benchtop

Integrating the two techniques proved challenging. Because electrons repel each other, there are only so many electrons that can be packed into one pulse. As you shorten each pulse to increase the time resolution, each pulse then contains fewer electrons, and the chance of interaction between the probing electrons and the core electrons decreases. Particularly at the high energy levels required to excite the deep core electrons (1st and 2nd electron shells), “the signal from many electron packets must be integrated over a long time,” explained van der Veen.

The researchers tested their technique on graphite thin-films, demonstrating that laser excitation causes the in-plane carbon-carbon bonds in the structure to expand and the π-π* energy gap to shrink on the picosecond (one trillionth of a second) time scale.

Core-loss spectroscopy is in some ways similar to X-ray absorption spectroscopy, but it has a few critical advantages. “Using X-rays, the study of individual nano-objects and the in situ atomic-scale imaging of materials remains quite challenging. In this respect, ultrafast core-loss spectroscopy in electron microscopy provides a huge advantage. Imaging, diffraction, and spectroscopy are all combined within the same table-top setup; complementary information about the same sample can readily be obtained,” said van der Veen.

The ability to visualize the ultrafast dynamics of individual atoms has broad applications across scientific disciplines, from materials science to biology. The researchers hope that future developments in “pulsed electron sources and detection methods” will enable their technique to be used in more advanced experiments.

Read more at:

Latest Papers

    • Ludmil Fachikov 
      Amorphous Phosphate Coatings on Steel Surfaces – preparation and characterization 
    • M. Hristova
      Prediction of the flash point of ternary ideal mixtures
    • Book Review by Alfons G. Buekens, Luc Hens
      Environmental Engineering: Principles and Practice 
      By Richard O. Mines, Jr.
  • 'Nanocage' tool untangles (molecular) spaghetti 10th July 2020
    A team of scientists at the University of Vermont have invented a new tool—they call it a "nanocage"—that can catch and straighten out molecule-sized tangles of polymers.
  • Liquid metal synthesis for better piezoelectrics: Atomically-thin tin-monosulfide 10th July 2020
    An RMIT-UNSW collaboration has applied liquid-metal synthesis to piezoelectrics, advancing future flexible, wearable electronics, and biosensors drawing their power from the body's movements.
  • Understanding the optimal process for fabricating coupled nanocrystal solids 9th July 2020
    Better understanding the science that underpins well-known techniques for developing quantum dots—tiny semiconducting nanocrystals—can help reduce the guesswork of current practices as material scientists use them to make better solar panels and digital displays.
  • Researchers develop high-speed, low-power silicon-germanium chips for cloud computing 9th July 2020
    Researchers at the Centre de Nanosciences et de Nanotechnologies, in cooperation with CEA LETI and STMicroelectronics, have demonstrated a power-efficient and high-speed silicon-germanium avalanche photo receiver. The device is fully compatible with accessible semiconductor technology and fiber-optic links operated at telecom waveband standard.
  • Porous graphene ribbons doped with nitrogen for electronics and quantum computing 8th July 2020
    A team of physicists and chemists has produced the first porous graphene ribbons in which specific carbon atoms in the crystal lattice are replaced with nitrogen atoms. These ribbons have semiconducting properties that make them attractive for applications in electronics and quantum computing, as reported by researchers from the Universities of Basel, Bern, Lancaster and […]
  • Fluorescent peptide nanoparticles, in every color of the rainbow 8th July 2020
    The discovery of green fluorescent protein (GFP), which is made by a jellyfish, transformed cell biology. It allowed scientists to stitch the GFP sequence to proteins from other organisms to trace their movements and interactions in living cells. Now, researchers reporting in ACS Applied Materials & Interfaces have designed peptide nanoparticles that can each glow […]
  • Purifying water with the help of wood, bacteria and the sun 8th July 2020
    According to the United Nations, about one-fifth of the world's population lives in areas where water is scarce. Therefore, technologies to produce clean water from undrinkable sources, such as seawater, river or lake water, and contaminated water, are urgently needed. Now, researchers reporting in Nano Letters have developed a wood-based steam generator that, with the […]
  • Graphene: It is all about the toppings 8th July 2020
    Graphene consists of a single layer of carbon atoms. Exceptional electronic, thermal, mechanical, and optical properties have made graphene one of the most studied materials at the moment. For many applications in electronics and energy technology, however, graphene must be combined with other materials. Since graphene is so thin, its properties drastically change when other […]
  • Detecting hidden nanostructures by converting light into sound 8th July 2020
    Researchers at ARCNL have found a way to detect nanostructures buried under many layers of opaque material using high-frequency sound waves induced by light. Their findings could have applications in the semiconductor manufacturing industry, such as wafer alignment. The researchers also revealed interesting new phenomena in photo-acoustics that have not been investigated before. Their results […]
  • Custom nanoparticle regresses tumors when exposed to light 7th July 2020
    A unique nanoparticle to deliver a localized cancer treatment inhibits tumor growth in mice, according to a team of Penn State researchers.