News_1

News

New technique for exploring structural dynamics of nanoworld

Source: http://phys.org/ link

New technique for exploring structural dynamics of nanoworld

Short electron pulses excite deep core-level electrons in materials providing snapshots of the structural dynamics after laser excitation. Credit: Zewail Lab/Caltech

Read more at: http://phys.org/news/2015-04-technique-exploring-dynamics-nanoworld.html#jCp

A new technique for visualizing the rapidly changing electronic structures of atomic-scale materials as they twist, tumble and traipse across the nanoworld is taking shape at the California Institute of Technology. There, researchers have for the first time successfully combined two existing methods to visualize the structural dynamics of a thin film of graphite.

Described this week in the journal Structural Dynamics, from AIP Publishing and the American Crystallographic Association, their approach integrated a highly specific structural analysis technique known as “core-loss spectroscopy” with another approach known as ultrafast four-dimensional (4-D) electron microscopy—a technique pioneered by the Caltech laboratory, which is headed by Nobel laureate Ahmed Zewail.

In core-loss spectroscopy, the high-speed probing electrons can selectively excite core electrons of a specific atom in a material (core electrons are those bound most tightly to the atomic nucleus). The amount of energy that the core electrons gain gives insight into the local electronic structure, but the technique is limited in the time resolution it can achieve—traditionally too slow for fast catalytic reactions. 4-D electron microscopy also reveals the structural dynamics of materials over time by using short pulses of high-energy electrons to probe samples, and it is engineered for ultrafast time resolution.

Combining these two techniques allowed the team to precisely track local changes in electronic structure over time with ultrafast time resolution.

“In this work, we demonstrate for the first time that we can probe deep core electrons with a rather high binding energies exceeding 100 eV,” said Renske van der Veen, one of the authors of the new study. “We are equipped with an ultrafast probing tool that can investigate, for example, the relaxation processes in photocatalytic nanoparticles, photoinduced phase transitions in nanoscale materials or the charge transfer dynamics at interfaces.”

Combining Two Techniques on One Benchtop

Integrating the two techniques proved challenging. Because electrons repel each other, there are only so many electrons that can be packed into one pulse. As you shorten each pulse to increase the time resolution, each pulse then contains fewer electrons, and the chance of interaction between the probing electrons and the core electrons decreases. Particularly at the high energy levels required to excite the deep core electrons (1st and 2nd electron shells), “the signal from many electron packets must be integrated over a long time,” explained van der Veen.

The researchers tested their technique on graphite thin-films, demonstrating that laser excitation causes the in-plane carbon-carbon bonds in the structure to expand and the π-π* energy gap to shrink on the picosecond (one trillionth of a second) time scale.

Core-loss spectroscopy is in some ways similar to X-ray absorption spectroscopy, but it has a few critical advantages. “Using X-rays, the study of individual nano-objects and the in situ atomic-scale imaging of materials remains quite challenging. In this respect, ultrafast core-loss spectroscopy in electron microscopy provides a huge advantage. Imaging, diffraction, and spectroscopy are all combined within the same table-top setup; complementary information about the same sample can readily be obtained,” said van der Veen.

The ability to visualize the ultrafast dynamics of individual atoms has broad applications across scientific disciplines, from materials science to biology. The researchers hope that future developments in “pulsed electron sources and detection methods” will enable their technique to be used in more advanced experiments.

Read more at: http://phys.org/news/2015-04-technique-exploring-dynamics-nanoworld.html#jCp

Latest Papers

    • Ludmil Fachikov 
      Amorphous Phosphate Coatings on Steel Surfaces – preparation and characterization 
    • M. Hristova
      Prediction of the flash point of ternary ideal mixtures
    • Book Review by Alfons G. Buekens, Luc Hens
      Environmental Engineering: Principles and Practice 
      By Richard O. Mines, Jr.
  • Researchers explain how disorder in tiny crystals enables heat-therapeutic systems 24th January 2020
    A new research study at the Institute of Electronic Structure and Lasers (IESL) of the Foundation for Research and Technology-Hellas (FORTH) finds that minute crystals, many thousand times smaller than a particle of dust, when they are dressed by the right kind of imperfections, adjust their electronic properties to favorably convert energy into heat, an […]
  • Researchers find ways to improve on soap and water 24th January 2020
    Nanosafety researchers at the Harvard T.H. Chan School of Public Health have developed a new intervention to fight infectious disease by more effectively disinfecting the air around us, our food, our hands, and whatever else harbors the microbes that make us sick. The researchers, from the School's Center for Nanotechnology and Nanotoxicology, were led by […]
  • Tackling antibiotic resistance: Phage-mimicking antibacterial core-shell nanoparticles could help 24th January 2020
    According to the World Health Organization, one of the biggest health threats around the world is antibiotic-resistant bacteria. Every day people use antibiotics to prevent or fight back against infection, but as bacteria evolve and develop resistance, diseases such as pneumonia and tuberculosis are becoming harder to treat.
  • Improving the manipulation of microparticles by sound 24th January 2020
    A simple but accurate theory of how sound interacts with small particles has been developed by theoretical physicists at RIKEN. This advance will help to improve the manipulation of microparticles by sound.
  • A megalibrary of nanoparticles 23rd January 2020
    Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six different materials and eight segments, with interfaces that could be exploited in electrical or optical applications. These rod-shaped nanoparticles are about 55 nanometers long and 20 […]
  • Researchers obtain atomically thin molybdenum disulfide films on large-area substrates 23rd January 2020
    Researchers from the Moscow Institute of Physics and Technology have managed to grow atomically thin films of molybdenum disulfide spanning up to several tens of centimeters square. It was demonstrated that the material's structure can be modified by varying the synthesis temperature. The films, which are important to electronics and optoelectronics, were obtained at 900-1,000° […]
  • Well-designed substrates make large single crystal bi-/tri-layer graphene possible 23rd January 2020
    Researchers of the Center for Multidimensional Carbon Materials (CMCM) within the Institute for Basic Science (IBS, South Korea) have reported in Nature Nanotechnology the fabrication and use of single crystal copper-nickel alloy foil substrates for the growth of large-area, single crystal bilayer and trilayer graphene films.
  • A design principle for creating selective and robust electrocatalytic interfaces 23rd January 2020
    To effectively counteract climate change and meet rising global energy requirements, humans must drastically change their methods for generating energy. New catalysts for a carbon-neutral conversion of energy could be of great help in facing these challenges, facilitating the shift toward the use of renewable energy sources.
  • Portable device helps doctors diagnose sepsis faster 23rd January 2020
    EPFL researchers have developed a highly sensitive and portable optical biosensor that stands to accelerate the diagnosis of fatal conditions like sepsis. It could be used by ambulances and hospitals to improve the triage process and save lives.
  • A new 'molecular nano-patterning' technique reveals that some molecular motors coordinate differently 22nd January 2020
    Body movement, from the muscles in your arms to the neurons transporting those signals to your brain, relies on a massive collection of proteins called molecular motors.