News_1

News

New technique for exploring structural dynamics of nanoworld

Source: http://phys.org/ link

New technique for exploring structural dynamics of nanoworld

Short electron pulses excite deep core-level electrons in materials providing snapshots of the structural dynamics after laser excitation. Credit: Zewail Lab/Caltech

Read more at: http://phys.org/news/2015-04-technique-exploring-dynamics-nanoworld.html#jCp

A new technique for visualizing the rapidly changing electronic structures of atomic-scale materials as they twist, tumble and traipse across the nanoworld is taking shape at the California Institute of Technology. There, researchers have for the first time successfully combined two existing methods to visualize the structural dynamics of a thin film of graphite.

Described this week in the journal Structural Dynamics, from AIP Publishing and the American Crystallographic Association, their approach integrated a highly specific structural analysis technique known as “core-loss spectroscopy” with another approach known as ultrafast four-dimensional (4-D) electron microscopy—a technique pioneered by the Caltech laboratory, which is headed by Nobel laureate Ahmed Zewail.

In core-loss spectroscopy, the high-speed probing electrons can selectively excite core electrons of a specific atom in a material (core electrons are those bound most tightly to the atomic nucleus). The amount of energy that the core electrons gain gives insight into the local electronic structure, but the technique is limited in the time resolution it can achieve—traditionally too slow for fast catalytic reactions. 4-D electron microscopy also reveals the structural dynamics of materials over time by using short pulses of high-energy electrons to probe samples, and it is engineered for ultrafast time resolution.

Combining these two techniques allowed the team to precisely track local changes in electronic structure over time with ultrafast time resolution.

“In this work, we demonstrate for the first time that we can probe deep core electrons with a rather high binding energies exceeding 100 eV,” said Renske van der Veen, one of the authors of the new study. “We are equipped with an ultrafast probing tool that can investigate, for example, the relaxation processes in photocatalytic nanoparticles, photoinduced phase transitions in nanoscale materials or the charge transfer dynamics at interfaces.”

Combining Two Techniques on One Benchtop

Integrating the two techniques proved challenging. Because electrons repel each other, there are only so many electrons that can be packed into one pulse. As you shorten each pulse to increase the time resolution, each pulse then contains fewer electrons, and the chance of interaction between the probing electrons and the core electrons decreases. Particularly at the high energy levels required to excite the deep core electrons (1st and 2nd electron shells), “the signal from many electron packets must be integrated over a long time,” explained van der Veen.

The researchers tested their technique on graphite thin-films, demonstrating that laser excitation causes the in-plane carbon-carbon bonds in the structure to expand and the π-π* energy gap to shrink on the picosecond (one trillionth of a second) time scale.

Core-loss spectroscopy is in some ways similar to X-ray absorption spectroscopy, but it has a few critical advantages. “Using X-rays, the study of individual nano-objects and the in situ atomic-scale imaging of materials remains quite challenging. In this respect, ultrafast core-loss spectroscopy in electron microscopy provides a huge advantage. Imaging, diffraction, and spectroscopy are all combined within the same table-top setup; complementary information about the same sample can readily be obtained,” said van der Veen.

The ability to visualize the ultrafast dynamics of individual atoms has broad applications across scientific disciplines, from materials science to biology. The researchers hope that future developments in “pulsed electron sources and detection methods” will enable their technique to be used in more advanced experiments.

Read more at: http://phys.org/news/2015-04-technique-exploring-dynamics-nanoworld.html#jCp

Latest Papers

    • Ludmil Fachikov 
      Amorphous Phosphate Coatings on Steel Surfaces – preparation and characterization 
    • M. Hristova
      Prediction of the flash point of ternary ideal mixtures
    • Book Review by Alfons G. Buekens, Luc Hens
      Environmental Engineering: Principles and Practice 
      By Richard O. Mines, Jr.
  • 3-D reconstructions of individual nanoparticles 2nd April 2020
    What do you see in the picture above? Merely a precisely-drawn three-dimensional picture of nanoparticles? Far more than that, nanotechnologists will say, due to a new study published in the journal Science. Whether a material catalyzes chemical reactions or impedes any molecular response is all about how its atoms are arranged. The ultimate goal of […]
  • Graphene-based actuator swarm enables programmable deformation 1st April 2020
    Actuators that can convert various environmental stimuli to mechanical work have revealed great potential for developing smart devices such as soft robots, micro-electromechanical systems (MEMS), and automatic lab-on-a-chip systems. Generally, bilayer structures are widely used for design and fabrication of stimuli responsive actuators. In the past decade, to pursue fast and large-scale deformation, great efforts […]
  • AI finds 2-D materials in the blink of an eye 1st April 2020
    Researchers at the Institute of Industrial Science, a part of The University of Tokyo, demonstrated a novel artificial intelligence system that can find and label 2-D materials in microscope images in the blink of an eye. This work can help shorten the time required for 2-D material-based electronics to be ready for consumer devices.
  • Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection 31st March 2020
    A new approach brings the hope of new therapeutic options for suppressing seasonal influenza and avian flu. On the basis of an empty and therefore non-infectious shell of a phage virus, researchers from Berlin have developed a chemically modified phage capsid that stifles influenza viruses.
  • Mystery solved: The origin of the colors in the first color photographs 31st March 2020
    A palette of colors on a silver plate: That is what the world's first color photograph looks like. It was taken by French physicist Edmond Becquerel in 1848. His process was empirical, never explained, and quickly abandoned. Now, a team at the Centre de recherche sur la conservation (CNRS/Muséum National d'Histoire Naturelle/Ministère de la Culture), […]
  • Heart attack on a chip: Scientists model conditions of ischemia on a microfluidic device 30th March 2020
    Researchers led by biomedical engineers at Tufts University invented a microfluidic chip containing cardiac cells that is capable of mimicking hypoxic conditions following a heart attack—specifically when an artery is blocked in the heart and then unblocked after treatment. The chip contains multiplexed arrays of electronic sensors placed outside and inside the cells that can […]
  • Double-walled nanotubes have electro-optical advantages 27th March 2020
    One nanotube could be great for electronics applications, but there's new evidence that two could be tops.
  • A new 'gold standard' for safer ceramic coatings 27th March 2020
    Making your own ceramics can be a way to express your creativity, but some techniques and materials used in the process could spell bad news for your health and the environment. If not prepared properly, some glazed ceramics can leach potentially harmful heavy metals. Scientists now report progress toward a new type of glaze that […]
  • 3-D printed sensors could make breath tests for diabetes possible 27th March 2020
    The production of highly sensitive sensors is a complex process: It requires many steps and the almost dust-free environment of special cleanrooms. A research team from Materials Science at Kiel University (CAU) and from Biomedical Engineering at the Technical University of Moldova has now developed a procedure to produce extremely sensitive and energy-efficient sensors using […]
  • Low-cost graphene-iron filters that selectively separate gaseous mixtures 27th March 2020
    UNSW researchers have shown how a new class of low-cost graphene-based membranes—a type of filter used in industry sectors that generate enormous mixed waste gases, such as solid plastic waste, biowaste or wastewater—can be selectively tuned to separate different gases from gaseous mixtures.