News_2

News

Materials researcher fathoms growth of nanostructures on metal surface

Source: http://phys.org/ link

Materials researcher fathoms growth of nanostructures on metal surface

Growth of nanostructures on a copper surface at different temperatures and exposure times. Credit: Tanyeli et al. / Nature Scientific Reports

Read more at: http://phys.org/news/2015-04-materials-fathoms-growth-nanostructures-metal.html#jCp

Materials scientist Irem Tanyeli from energy research institute DIFFER has discovered how you can grow nanostructures in a controlled manner on a variety of metals, by bombarding the metals with helium particles. Such controlled nanostructures provide the possibility of advanced electrodes that produce sustainable fuel using solar energy. Tanyeli and her fellow researchers from DIFFER, ITER and the University of Basel published their results in Nature’s Scientific Reports on 28 April 2015.

Blowing bubbles in metal

In their research Tanyeli and her colleagues exposed different metal surfaces to a hot intense beam of charged helium gas (plasma) in DIFFER’s plasma experiment Magnum-PSI. Helium easily penetrates into the metal lattice where it forms bubbles that push the surrounding metal outwards. In this way, different structures of tens to hundreds of nanometeres in size arise per metal. By describing the differences, Tanyeli could analyse which underlying processes formed the nanostructures such as the temperature and the structure of the metal lattice.

That helium plasma can cause a metal to explode in nanostructures had previously been discovered when researchers tested wall materials for fusion energy reactors. They then discovered strange shapes on the metal wall surface. In a fusion reactor, these nanostructures are undesirable because they reduce the discharge of heat, but in other applications the nanostructures are very useful, thinks co-researcher and DIFFER director Richard van de Sanden.

Fundamental insight

“Irem Tanyeli’s research is important due to the fundamental insight”, says Van de Sanden. “How do such nanostructures grow on a surface, which processes play a role in that, what are the bottlenecks, and how can you manage the process? If you understand that then you can produce advanced materials on a large-scale that can be given properties to order.” That has a wide range of applications in sustainable energy technologies.

Converting sunlight into hydrogen

Tanyeli’s nanostructures are interesting for catalyst applications such as the use of solar energy to produce hydrogen from water. Widely available and cheap materials can usually not compete against the efficiency of expensive but rare record holders such as platinum. But with the right nanostructures the cheaper materials can still be made competitive.

That opens up possibilities for the large-scale storage and conversion of sustainable energy in the form of chemical compounds: solar fuels. Such fuels have no net CO2-emission and, therefore, offer opportunities for the transport sector. Solar fuels are seen as an important way of storing sustainable energy, for example the solar energy that is generated during the sun-rich summer can be stored for use during the dark winter

Read more at: http://phys.org/news/2015-04-inkjet-printed-liquid-metal-wearable-tech.html#jCp

Latest Papers

    • Ludmil Fachikov 
      Amorphous Phosphate Coatings on Steel Surfaces – preparation and characterization 
    • M. Hristova
      Prediction of the flash point of ternary ideal mixtures
    • Book Review by Alfons G. Buekens, Luc Hens
      Environmental Engineering: Principles and Practice 
      By Richard O. Mines, Jr.
  • 3-D reconstructions of individual nanoparticles 2nd April 2020
    What do you see in the picture above? Merely a precisely-drawn three-dimensional picture of nanoparticles? Far more than that, nanotechnologists will say, due to a new study published in the journal Science. Whether a material catalyzes chemical reactions or impedes any molecular response is all about how its atoms are arranged. The ultimate goal of […]
  • Graphene-based actuator swarm enables programmable deformation 1st April 2020
    Actuators that can convert various environmental stimuli to mechanical work have revealed great potential for developing smart devices such as soft robots, micro-electromechanical systems (MEMS), and automatic lab-on-a-chip systems. Generally, bilayer structures are widely used for design and fabrication of stimuli responsive actuators. In the past decade, to pursue fast and large-scale deformation, great efforts […]
  • AI finds 2-D materials in the blink of an eye 1st April 2020
    Researchers at the Institute of Industrial Science, a part of The University of Tokyo, demonstrated a novel artificial intelligence system that can find and label 2-D materials in microscope images in the blink of an eye. This work can help shorten the time required for 2-D material-based electronics to be ready for consumer devices.
  • Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection 31st March 2020
    A new approach brings the hope of new therapeutic options for suppressing seasonal influenza and avian flu. On the basis of an empty and therefore non-infectious shell of a phage virus, researchers from Berlin have developed a chemically modified phage capsid that stifles influenza viruses.
  • Mystery solved: The origin of the colors in the first color photographs 31st March 2020
    A palette of colors on a silver plate: That is what the world's first color photograph looks like. It was taken by French physicist Edmond Becquerel in 1848. His process was empirical, never explained, and quickly abandoned. Now, a team at the Centre de recherche sur la conservation (CNRS/Muséum National d'Histoire Naturelle/Ministère de la Culture), […]
  • Heart attack on a chip: Scientists model conditions of ischemia on a microfluidic device 30th March 2020
    Researchers led by biomedical engineers at Tufts University invented a microfluidic chip containing cardiac cells that is capable of mimicking hypoxic conditions following a heart attack—specifically when an artery is blocked in the heart and then unblocked after treatment. The chip contains multiplexed arrays of electronic sensors placed outside and inside the cells that can […]
  • Double-walled nanotubes have electro-optical advantages 27th March 2020
    One nanotube could be great for electronics applications, but there's new evidence that two could be tops.
  • A new 'gold standard' for safer ceramic coatings 27th March 2020
    Making your own ceramics can be a way to express your creativity, but some techniques and materials used in the process could spell bad news for your health and the environment. If not prepared properly, some glazed ceramics can leach potentially harmful heavy metals. Scientists now report progress toward a new type of glaze that […]
  • 3-D printed sensors could make breath tests for diabetes possible 27th March 2020
    The production of highly sensitive sensors is a complex process: It requires many steps and the almost dust-free environment of special cleanrooms. A research team from Materials Science at Kiel University (CAU) and from Biomedical Engineering at the Technical University of Moldova has now developed a procedure to produce extremely sensitive and energy-efficient sensors using […]
  • Low-cost graphene-iron filters that selectively separate gaseous mixtures 27th March 2020
    UNSW researchers have shown how a new class of low-cost graphene-based membranes—a type of filter used in industry sectors that generate enormous mixed waste gases, such as solid plastic waste, biowaste or wastewater—can be selectively tuned to separate different gases from gaseous mixtures.